English  |  正體中文  |  简体中文  |  Items with full text/Total items : 889/889 (100%)
Visitors : 14660749      Online Users : 28
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version
    Please use this identifier to cite or link to this item: http://ccur.lib.ccu.edu.tw/handle/A095B0000Q/475

    Title: 病人流失預測之研究-以南部某診所減肥病人為例;Research on patient churn prediction:Taking patients for weight reduction in the clinic in the south of Taiwan as an example
    Authors: 陳全裕;CHEN, CHUAN-YU
    Contributors: 資訊管理學系碩士在職專班
    Keywords: 資料探勘;減重;病人滿意度;忠誠;顧客流失;失約;weight reduction;patient satisfaction;loyalty;customer churn;data mining;missed appointment
    Date: 2017
    Issue Date: 2019-07-17
    Publisher: 資訊管理學系碩士在職專班
    Abstract: 過去對顧客忠誠之研究甚多,已經確定了減少顧客流失的重要性,也讓我們了解影響顧客流失的原因;病人流失可能會造成醫療延遲與資療浪費的重大結果,與病人健康及醫療院所經營非常相關,所以降低病人流失很重要,了解並預測病人的流失是一個有意義的研究題目。回顧文獻,資料探勘是一種探討顧客流失常用的研究方法,但是用在病人流失方面卻是相當稀少,尤其是研究台灣的病人流失幾乎是沒有。本研究是針對診所病人之個人資料等較客觀因素,採資料探勘方法探查病人流失情形,以了解影響診所減肥病人流失的原因。本研究收集台灣南部某診所2015?6月1日至2015?12月31日間,減肥民眾主動至該診所尋求減肥協助時第一次就診(初診)時自填的所有紙本資料,獲得65個變數,經資料篩選、前處理後,刪除資料遺漏值過多或資料錯誤之筆數,共計850筆;運用資料探勘中的決策樹C4.5(J48)、支援向量機(SVM)、風險樹CART decision tree、Random Forest和羅吉斯迴歸Logistic Regression等技術,預測減肥病人三個月流失情形。結果顯示,預測效能最佳的是隨機森林(RandomForest)(AUC:94.7%);影響初診後三個月病人流失的因子其重要性前五名依序為正使用類固醇藥物、收縮壓、體重、身體質量指數、腰圍,其他如增胖原因為更年期後、體脂、期望減肥值、年齡及減肥動機未明等因子也可提供臨床醫師在病人減肥初診評估時的參考依據,給予適當處置,使三個月病人流失減少,以提昇就醫順從性,進而增加減肥成效。
    The study enrolled a total of 850 patients undergoing weight reduction between June 2015 to December 2015 in a clinic in southern Taiwan. Data on preparation of self-reported questionaire were investigated by using data mining techniques, including decision tree, simple logistic regression, classification and regression trees, support vector machine, and random forest to predict the churn after 12-week follow up. The model constructed by using random forest performed best with an area under curve of 94.7%.The study identified several critical factors for the prediction of 12-week missed appointment of the patients for weight reduction, including current steroid treatment, systolic blood pressure, initial weight, initial BMI, initial waist circumference, expectations of result, obvious increased weight after menopause, age, and unknown motivation. These findings can help clinicians evaluate the risk of 12-week missed appointment when the patient ask for weight reduction, and provide individualized intervention for decreasing the churn and increasing the effectiveness of weight reduction.
    Appears in Collections:[資訊管理系研究所] 學位論文

    Files in This Item:

    File Description SizeFormat

    All items in CCUR are protected by copyright, with all rights reserved.

    版權聲明 © 國立中正大學圖書館網頁內容著作權屬國立中正大學圖書館


    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - Feedback