English  |  正體中文  |  简体中文  |  Items with full text/Total items : 888/888 (100%)
Visitors : 13699621      Online Users : 284
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version
    Please use this identifier to cite or link to this item: http://ccur.lib.ccu.edu.tw/handle/A095B0000Q/8

    Title: 基於腦波的疲勞駕駛偵測系統;An EEG-based Driver Drowsiness Detection System Design
    Authors: 林芳瑜;LIN, FANG-YU
    Contributors: 資訊工程研究所
    Keywords: 腦機介面;穿戴式裝置;EEG;類神經網路;疲勞;Brain-computer Interface;Wearable Device;EEG;Neural Network;Drowsiness
    Date: 2018
    Issue Date: 2019-05-23 10:30:08 (UTC+8)
    Publisher: 資訊工程研究所
    Abstract:   每年都有數以萬計的車禍發生,其中有大部分的車禍是因為疲勞所引起,疲勞駕駛變成相當嚴重的問題,最糟的情況還有可能成為致命的車禍,所以我們必須使用有效的方法來偵測疲勞駕駛才能避免嚴重的交通意外事故發生,因此我們希望藉由提出一個創新的系統來解決這一個嚴重的問題。  為了偵測疲勞駕駛,我們提出了一個基於可穿戴式單通道腦波儀實作的疲勞偵測系統,這個單通道腦波儀並不昂貴且不會侵入人體,因此駕駛可以負擔儀器的金額,而且穿戴起來並不會不舒服,不會影響對車輛的操作,駕駛在穿戴腦波儀的同時便向運算平台傳送腦波資料,如此可減少偵測疲勞的操作時間,而且能在偵測到疲勞時將危險警訊回饋給駕駛知道。我們的系統使用兩次驗證的方式來降低誤報的可能性,如此可避免造成駕駛的困擾。  經實驗證實我們的系統能在短時間分辨駕駛的精神是清醒或是疲勞的階段。
    Every year tens of thousands of traffic accidents occur. Most of them are related to fatigue. Fatigue driving has always been a very serious traffic problem. In the worst case, such traffic accidents can be fatal. In order to ensure road safety and increase driving safety, we must use an effective method to detect the driver’s drowsiness level to prevent serious traffic accidents. Thus, we expect to be able to build an innovative system to solve this serious problem.In order to detect driving fatigue, we propose a drowsiness detection system which is based on wearable single channel EEG headset device. The single channel EEG instrument is not expensive so driver can afford it and it is a non-invasive instrument that can reduce the wearing discomfort and does not affect the driver’s operation of the vehicle. The driver wore the EEG instrument at the same time transmit their EEG data to a computing platform. In this way it can effectively reduce the operation time to do drowsiness detection and the danger warning can be sent back to the driver as a feedback. Our work uses two drowsiness verification step to reduce the number of false positives.Experiments show that our system can effectively distinguish between the state of awake and drowsiness of driver in short time.
    Appears in Collections:[資訊工程學系] 學位論文

    Files in This Item:

    File Description SizeFormat

    All items in CCUR are protected by copyright, with all rights reserved.

    版權聲明 © 國立中正大學圖書館網頁內容著作權屬國立中正大學圖書館


    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - Feedback