English  |  正體中文  |  简体中文  |  Items with full text/Total items : 888/888 (100%)
Visitors : 13005327      Online Users : 226
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version
    Please use this identifier to cite or link to this item: http://ccur.lib.ccu.edu.tw/handle/A095B0000Q/603


    Title: 即時辨識移動物體之連續波雷達信號分析系統;Continuous Wave Radar Based Signal Analysis System For Real-time Recognition Of Moving Objects
    Authors: 萬勃甫;WAN, PO-FU
    Contributors: 資訊工程研究所
    Keywords: 連續波雷達;都卜勒效應;步態分析;模式識別;Continuous wave radar;Doppler effect;Gait analysis;Pattern recognition
    Date: 2017
    Issue Date: 2019-07-17
    Publisher: 資訊工程研究所
    Abstract: 移動目標的辨識對於社會安全或是智慧生活產品上有很大的幫助,能在災區協助救災人員尋找生命,也能透過步態分析在醫療上能夠提早發現疾病,然而目前大部分研究是利用攝影機蒐集影像進行影像特徵提取與分析來達到追蹤與辨識。本研究使用連續波雷達,反射回來的雷達波能根據都卜勒效應計算出目標運動的方向與速度。由於不同物體移動時會有各自的行為特徵,透過時頻分析其週期變化可提取有用的特徵進行分類與辨識,我們的目的是要能辨識出人與非人(狗、車與空白背景)。經過了一系列的實驗,蒐集了人與非人的步態資料,我們提出四種特徵組合的方法,探討其辨識率,並透過K-nearest neighbor與Support vector machine兩種分類器,比較是否要先用Fisher linear discriminant analysis來分割。最後建立了一個簡單的使用者介面,方便進行即時的移動物體分類,來輔助未來以連續波雷達辨識物體的應用。
    The recognition of moving targets is very helpful for social security or smart living products. Most research achieve the goal of objects tracking and identification by using a camera to collect image data for feature extraction and analysis. In this work, we use a continuous wave radar, and calculate the direction and speed of an moving object from its reflected radar wave according to the Doppler effect. Since different objects have their own motion behavioral patterns, we can perform classification or recognition tasks by analyzing its periodicity with time frequency analysis and extracting meaningful features. Our goal is to differentiate human and non-human objects like dogs, cars, and blank background.After collecting the human and non-human gait data through a series of experiments, we proposed four combinations of features, and used K-nearest neighbor and Support vector machine classifiers to check if Fisher linear discriminant analysis is required as a preprocessing. The recognition rate under different feature combinations and classifiers were compared. We also establish a simple user interface to facilitate the real-time moving target recognition for future applications.
    Appears in Collections:[資訊工程學系] 學位論文

    Files in This Item:

    File Description SizeFormat
    index.html0KbHTML278View/Open


    All items in CCUR are protected by copyright, with all rights reserved.


    版權聲明 © 國立中正大學圖書館網頁內容著作權屬國立中正大學圖書館

    隱私權及資訊安全政策

    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - Feedback