本研究提出一種創新的應用,結合更快的區域卷積神經網絡(Faster Region with Convolution Neural Network, Faster R-CNN)與主動形狀模型(Active Shape Model, ASM)應用於心臟左心室超音波影像之自動分割。由於左心室形狀與外觀變化甚大,但藉由深度學習,我們僅須透過小的訓練集就可以適應不同的心臟相位和案例。比起其他傳統的分割方法,ASM是一種基於模型的分割方法,其中包含訓練與統計分析。CNN在目標識別方面表現優異,成為許多目標識別挑戰中的首選算法。而Faster R-CNN使用CNN提取影像特徵,改進區域提案方法,與Fast R-CNN檢測網路共享卷積特徵,使得目標檢測和識別近乎同時。本研究詳細描述了Faster R-CNN與ASM算法,並用於心臟左心室超音波影像。我們測試了醫生提供之臨床數據,結果證實我們的方法在完全自動化挑戰中達到了一定的準確率,且具備非常有競爭力的執行時間。 We introduce an innovative application that combines Faster Region with Convolution Neural Network (Faster R-CNN) and Active Shape Model (ASM) for automated segmentation of the left ventricle of the heart from ultrasound data. This combination is relevant for segmentation problems, where the left ventricle presents large shape and appearance variations, but we can use only small annotated training set to adapt different heart phase and case by deep learning. Compare to other tradition segmentation methods, ASM is a model-based segmentation methodology which incorporates training and statistical analysis. CNN is excellent in target recognition and it became the preferred algorithm in many target recognition challenge. Faster R-CNN uses the CNN to extract the image features, improves the region proposal method, shares the convolution feature with the Fast R-CNN, and makes the target detection and recognition almost instantaneous.This study describes the Faster R-CNN and ASM algorithms in detail and used on left ventricular ultrasound images. We test our methodology on the data from clinicians, and our approach achieves the equivalent accuracy in the state-of-the-art results for the fully automated challenge, while having very competitive execution time.